VOLUMES MOLAIRES APPARENTS DES HALOGÉNURES ALCALINO-TERREUX DANS LES SOLUTIONS AQUEUSES D'ACIDES HALOGÉNÉS CORRESPONDANTS

G. PERACHON ET J. THOUREY

Laboratoire de Physico-chimie minérale associé au C.N.R.S., Institut National des Sciences Appliquées, 20 grenue Albert Einstein, 69621 Villeurbanne (France) (Recu le 5 décembre 1977)

ABSTRACT

The apparent molal volumes of alkali earth halides have been measured for a wide range of concentrations in salt and halogen acid, and the apparent molal volume has been determined at infinite dilution.

RÉSUMÈ

Les volumes molaires apparents des halogénures alcalino-terreux ont été mesurés pour un large domaine de concentration en sel et en acide halogéné et le volume molaire apparent à dilution infinie calculé.

INTRODUCTION

Le volume molaire apparent d'un sel en solution est une donnée importante pour la recherche de la structure des solutions et principalement lors de l'étude des phénomènes d'hydratation des ions. Toutes nos mesures sont effectuées à 25°C. La grandeur mesurée permettant de déterminer les volumes molaires est la masse volumique de la solution. Nous avons étudié pour chaque système le domaine de concentration le plus étendu possible, en halogénure et acide halogéné. Pour les sels de calcium nous avons pu effectuer ces mesures pour tout le domaine de concentration en acide, par contre, pour les autres halogénures, nous sommes rapidement limités par la très faible solubilité de ces composés lorsque la concentration en acide halogéné augmente.

C'est ainsi que nous avons limité notre étude à une concentration en acide: molaire pour le système BaCl₂/HCl/H₂O;

- 6 fois molaire pour le système SrCl2/HCI/H2O;
- 4,5 fois molaire pour le système SrBr2/HBr/H2O;
- 4,5 fois molaire pour le système BaBr₂/HBr/H₂O.

TECHNIQUES EXPERIMENTALES

Principe

La mesure de la différence de masse volumique entre le solvant pur et la solution permet de déterminer le volume molaire apparent du soluté.

Nous avons employé deux méthodes suivant la concentration des solutions: méthode de Stabiner et al. 1 pour les solutions concentrées; méthode de Rabardei et al. 2 pour les solutions diluées.

Solutions concentrées

La masse volumique de la solution est déduite de la fréquence de vibration d'un tube de verre oscillant dans lequel elle est introduite. Nous avons utilisé un microdensimètre PAAR DMA 10. Un tube de verre est mis en oscillation par un oscillateur électronique. La fréquence de vibration de ce tube dépend de sa masse totale, et par conséquent de la masse volumique du liquide qu'il contient. Cette fréquence est mesurée électroniquement et un compteur digital à 5 décades affiche la période des oscillations. Le tube oscillant est placé sur un bloc métallique de grandes dimensions maintenu à température constante par circulation d'eau. L'échantillon est introduit dans le tube de mesure à l'aide d'une seringue. Il est indispensable d'éliminer totalement les bulles de gaz pouvant se former dans le tube lors de l'injection. La mesure n'est effectuée que lorsque la température d'équilibre est atteinte. Afin de connaître la masse volumique de la solution étudiée, nous réalisons un étalonnage grâce à deux fluides de masses volumiques parfaitement connues. Pour plus de sécurité, l'appareil est placé dans une pièce thermorégulée.

La relation entre la période d'oscillation τ et la masse volumique de la solution est de la forme

$$\rho - \rho_{\rm ref} = k(\tau^2 - \tau_{\rm ref}^2)$$

k est une constante d'appareil déterminée par étalonnage à l'aide de deux fluides de référence

$$k = \frac{\rho_{\text{ref}_1} - \rho_{\text{ref}_2}}{\tau_{\text{ref}_1}^2 - \tau_{\text{ref}_2}^2}$$

Pour calculer cette constante, nous avons choisi l'eau ($\rho_{ref_1} = 0.99707$ à 25° C) et l'air ($\rho_{ref_2} = 1.1843 \cdot 10^{-3}$ à 25° C). Le solvant pur a évidemment été utilisé comme référence pour la mesure des différences de masse volumique entre les solutions et ce solvant. La sensibilité d'une telle méthode est limitée à des différences de masse volumique de l'ordre de $3 \cdot 10^{-4}$ g cm⁻³.

Solutions diluées

Le principe de la méthode est de mesurer la différence de poussée d'Archimède appliquée à un corps plongé dans le solvant ou la solution. Si ΔP est cette différence de poussée et V le volume du corps immergé

$$\Delta \rho = \frac{\Delta P}{V}$$

L'appareil est constitué d'une balance Mettler H 20 au plateau de laquelle est suspendu un cylindre de verre plein. Ce cylindre est plongé successivement dans le solvant et dans les différentes solutions. Ces différentes solutions sont placées dans un récipient thermorégulé par une circulation d'eau.

Exploitation des résultats

Soient:

 ρ_0 la masse volumique du solvant en g cm⁻³;

 p_1 la masse volumique de la solution en g cm⁻³;

M la masse molaire du sel (g);

 \overline{V}_{M} le volume molaire du sel cristallisé (cm³):

C la concentration du sel en mole l'1.

Un litre de solution contient CM grammes de sel et (1000 ρ_1 – CM) grammes de solvant. Le volume de l'ensemble avant mélange est

$$\frac{1000 \, \rho_1 - \text{CM}}{\rho_0} + C \, \vec{V}_{\text{M}} \, \text{cm}^3$$

Le volume d'excès par mole de sel est alors

$$\vec{V}_{\varepsilon} = \frac{1}{C} \left(1000 - \frac{1000 \, \rho_1 - \text{CM}}{\rho_0} - C \, \vec{V}_{\text{M}} \right)$$

Si nous posons $\Delta \rho = \rho_1 - \rho_0$ il vient

$$\vec{V}_{\rm E} = \frac{1}{\rho_0} \left(M - \frac{1000}{C} d\rho \right) - \vec{V}_{\rm M}$$

La quantité

$$\frac{1}{\rho_0}\left(M-\frac{1000}{C}\Delta\rho\right)=\phi_{\tau}$$

représente le volume molaire apparent du sel en solution. La précision est de l'order à 1 à 2 %

RESULTATS EXPERIMENTAUX

Les Tableaux 1 à 9 donnent les valeurs des volumes molaires apparents en fonction de la concentration en sel pour différentes concentrations en acide. Dans ces Tableaux, $\Delta \rho$ représente la différence de masse volumique entre la solution (MX₂/HX/H₂O) d'une part et le solvant (H₂O ou HX/H₂O) d'autre part. A $\Delta \rho$ correspond le volume molaire apparent ϕY .

TABLEAU 1
VOLUME MOLAIRE APPARINT DE CACI, DANE LE SYSTÈME CACI, (14,0/HC)

0 1/1/10 D	14Cl4/1140	,	CaClallici	CaCleHigo		CaClalHCl & N	C16 N		CaClalHCI 9 N	CaClalHCI 9 N		Ė	CIICIAIIICI IZIZI N	×
7aC/s male (**)	CaCla 103 clp dr CaCla 1 (mole l-1) (g cm-3) (cm3) (mole l-1) (der (rm³)	CaCts (male ?-	CaCla 103 (p 41.	(cnr ⁴)	Cacla (male !"	CaCla 103 410 41.	фт фт (ст)	CaCl ₃ (male 1-1)	41. la (# cm²	CaCl ₃ 10 ³ . 1p. 4p. (mole (R cm ⁻³) (cm ³)		CuCla 103 Ap 41. (mole (# (cm²)	(cm ³)
3, 1,5 0,75 0,1875 0,1875	248.0 129.2 66.6 33.5 16.9	20.44.20. 20.44.44.44.44.44.44.44.44.44.44.44.44.44	3 1,2 0,48 0,192 0,077	240,6 96,3 41,04 16,83 6,87	25,05 5,05 5,05 7,05 7,05 7,05	40,6 30,43 2,02 124,3 45,4 1,01 96,3 30,3 10,38 1,01 62,4 45,16 0,375 41,04 25,19 0,505 31,6 44,52 0,202 16,83 23,06 6,87 21,3	124,3 ' 62,4 71,6	45,4 45,76 44,52	1,01 0,175 0,202	26,1 20,18 11,44	54,1 50,53 20,18 50,19 11,44 47,84	0,76 41,1 0,18 19,8 0,19 9,7 0,095 4,2	41,1 19,8 9,7 4,2	48,31 49,99 50,88 56,69

TABLEAU 2 VOLUME MOLAIRE APPARENT DE SPC12 DANS LE SYSTÈME SPC12/H3O/HC1

SrChillan			Srchiller	2		SPCHINCLIN	<i></i>		SrCI4/IICI 6 N	×	
SrC14 104 dp dr. (male 1-1) (sem ²)	(fr. (1) #)			103.A.((cm)	SrC4 (male (=1)	SPC14 $(D^3/16)$ (Φ^4) $(ED)^3$		SrC14 103 /1p 461 (111116 141)	104 /1p (R cm ⁻⁴)	ф1. (cm²)
2	259	28,8	1,37	. 175, <u>175, 175, 175, 175, 175, 175, 175, 175, </u>	18	В	37,8	31.3	The language and the construction of the company of the construction of the constructi	AND THE COLUMN TO SERVER SERVE	18. S
 -		26,23		71,4	¥,5	0,15	19,01	30,4	\$1.0 \$1.0	30	12.2
-		25,95		35,0	9,7	6,075	7.0	20.05	0.123	11.2	1.14
9.0 O		77.7				0.037	30	•	5630	- C	a ur
0,s		23,52			•	· •	<u>.</u>		1	1	2
0,3		13									
0,25		21,3									
0,15		400									
0,125		C. 3									
	İ										

TABLEAU 3

VOLUME MOLAIRE APPARENT DE BaCl₂ DANS LE SYSTÈME BaCl₂/H₂O/HCl

BaCl:/H:O			BaCl±HCl I I	₹	
BaCl ₂ (mole l ⁻¹)	/(J² 4] p (g. cm-²)	ør (cm²)	BaCl; (mole [-1]	/0° Ap (g cm²)	∳r ,
1.3	226,8	34,01	0,67	115.8	34,4
0,65	115	31,41	0,45	79.6	32,3
0,52	92.2	31,02	0,27	46,9	31,9
0.39	69 ,4	30,3\$	0,23	40,05	31,3
0.26	46.5	29,48	0.113	19.9	32,2
0,13	24,4	28,32	0.057	9.8	34,8
			0.043	7,4	35

TABLEAU 4

VOLUME MOLAIRE APPARENT DE CABRE DANS LE SYSTÈME CABRE/HEO/HCI

CaBr:: H:C)		CaBr:!H:0	SHBF 1,5 N	1	CaBr::[H:C);HBr 4,5 N	7
CaBr: (mole l-1)	/0 ² .1p (g cm ⁻³)	фr (cm²)	CaBr ₂ (male !-1)	10 ² .1 _p (g cm ⁻³)	61° (cm³)	CaBr: (mole l-1)	[0] .[p (g cm ⁻²)	фr (ст²)
1	162,95	38,4	1	157.9	38,9	0,27	35,12	55,6
0,5	81.6	38.2	0,5	78,4	40	0,135	17,2	57,8
0,25	49,4	37,6	0,25	38.8	41,5	0,067	8,92	63,9
0.125	21,6	36,2	0,125	19,3	42,3	0,033	3.9	67,7

TABLEAU 5 VOLUME MOLAIRE APPARENT DE S'Br2 DANS LE SYSTÈME S'Br2/H2O/HBr

SrBr::H:C	•		SrBr ₌ H ₌ O	HB- IS N		SrBr⊴H ₂ O	HBr 4,5 N	'
SrBr± (mole -1)	/0 ² .1 _P (g cm ⁻²)	фе (ст³)	SrBr± (mole -1)	(g cm ⁻³)	φr (cm²)	SrBr ₂ (male l ⁻¹)	10 ³ Ap (g cm ⁻³)	φυ (cm²)
2	412.4	41,36	1,65	326,3	45,5	0.269	45,3	63,9
1,5	310.8	40.3	1,06	213,3	42,9	0.134	22.6	64.4
0.75	157,5	37.5	0,53	107,2	41.9	0,067	11.3	65.9
0.375	78,9	36,93	0.265	54	40.5	0.033	5,5	66,6
0.187	39.5	36,47	0.1325	26,9	40.8	-		

TABLEAU 6
VOLUME MOLAIRE APPARENT DE BABRE DANS LE SYSTÈME BABRE HEO/HBR

BaBr= H=0	7		BaBr_!H_O	HBr I.S N	Ŗ.	BaBr±H±O	[HBr 4,5]	V
BaBr ₂ (mole l=1)	10º Ap (g cm-2)	φr (cm²)	BaBr± (mole l=1)	102 Ap (g cm-2)	ģr (cm²)	BaBr± (mole l-1)	/0º Jp (g cm-°)	∳1 ⁻ (cm²)
1	240	52,95	0,97	251,2	39,43	0.134	30,4	57
0.5	122,4	48.6	0,487	125.9	38.74	0,067	15.5	52,6
0.25	61.18	48.5	0,243	63,2	37.17	0.033	7.8	52.2
0.125	30.9	46	0.1217	32.4	36,43	•	. •	•

TABLEAU 7 VOLUME MOLAIRE APPARENT DE Cal $_2$ DANS LE SYSTÈME Cal $_2$ / H_2 O/ H_1

Cal_H_O			Cal::[H::0]	HI 2 N		Cal ₂ H ₂ O	HI 4 N	
Cal ₂ (mole l ⁻¹)	[0 ² .]p [g cm ⁻²]	фг (ст³)	Cal: (mole l 1)	10 ² Ap (g cm ⁻³)	∳r (cm²)	Cal ₂ (mole l-1)	[(f cm ⁻³)	(cm²)
]	236,5	57,5]	204,4	76,3	ĵ	179.9	83,9
0,4	95.3	55.9	0.4	81,6	76,7	0,5	\$8,5	85,7
0.16	38.4	53,8	0,16	26	77,6	0.4	70,5	86,7
0.064	15.5	51.8	0.025	7	78.4	0.25	44	87.3

TABLEAU 8
VOLUME MOLAIRE APPARENT DE STI: DANS LE SYSTÈME STI:/H:O/HI

Srl:: H::0			Srl::[H:O[i	41 2 N		Srl:[H:O]	414 N	
SrI: (mole l-1)	10º Ap (g cm-2)	∳r (cm²)	Srl ₂ (mole l ⁻¹)	102 .1p (g cm-2)	φr (cm²)	Srl ₂ (mole l-1)	10 ³ Ap (g cm ⁻³)	ør (cm³)
1	178,7	63		245.6	\$1,2	0.997	217.7	91.3
0,5	199,4	62.9	0,4	97,6	82.5	0.398	79.9	104,6
0,25	69 .9	62.2	0.1	38.6	§4,7	0,159	26	131,8
0,125	35	61.3	0.065	14,7	86.5	0,063	\$	157,6

TABLEAU 9

VOLUME MOLAIRE APPARENT DE BAI: DANS LE SYSTÈME BAI-/H;O/HI

Bal≟H±O	~		Bal=[H=O]	HI 2 N		Bal-#H-0[.	HI 4 N	
Bal: (mole [-1]	20° .1p (2 cm-1)	(cm²)	Balz (mole [-1]	[0 ² /]p (g cm ⁻³)	φι· (cm²)	Bal: (mole l=1)	10 ¹ Ap (g cm ⁻¹)	φr (cm²)
2.05	667	65,7	<u> </u>	308.5	70,5	1	300.3	67,2
0,819	267	65,4	0,4	124,5	68,1	0.4	121	65,6
0,328	EO7	63,9	0.16	49,8	68.2	0,16	45,3	66
0.131	43	62.6	0.064	19.15	78.4	0.064	18.2	79.2

DISCUSSION DES RESULTATS

Les Tableaux 1 à 9 montrent que le volume molaire apparent des halogénures alcalino-terreux augmente quand la concentration en acide halogéné croit. Grâce à ces mesures, nous pouvons déterminer les valeurs des volumes molaires apparents à

TABLEAU 10
VOLUMES MOLAIRES APPARENTS À DILUTION INFINIE ϕ_{τ^0}

Système	(cm ₂) \$* ₀	Système	φ _ε ¤ (cm³)	Système	<i>ફ</i> ન° (<i>cm</i> ²)
CaCle/HeO	18,4	CaBr:/H:O	33	Cal ₂ /H ₂ O	51,6
CaCla/HCL LN	19,8	CaBr₂/HBr 1.5 N	44,6	CalaHI 2 N	78,6
CaClaHCl 6 N	42.7	ÇaBr₂/HBr 4,5 N	76	Cal₂HI 4 N	90,2
CaClaHCI 9 N	49,6				
CaCla/HCl 12 N	62.5	SrBr ₂ /H ₂ O	36,02	Srl _{=/} H ₌ O	60,4
		SrBra/HBr 1.5 N	40,7	SrlaHI 2 N	87
SrCI_#H_O	19,2	SrBr=/HBr 4,5 N	68	Srl⊴HI 4 N	174,5
SrCI=/HCI I N	24,2			-	- •
SrCI_HCI 3 N	29,4	BaBr∉/H₂O	35,6	B≥I±H±O	61,8
SrCI_HCI 6 N	39,9	BaBra/HBr 1,5 N	44	BalaHi 2 N	85,2
		BaBra/HBr 4,5 N	52	Bal⊴Hi 4 N	22
BaCl ₂ /H ₂ O	26.4	,		"	
BaCla/HCI I N	38,4				

dilution infinie, notés ϕ_P , pour les différents systèmes étudiés. Ces valeurs, obtenues par extrapolation des courbes $\phi_r = f(C)$, sont reportées dans le Tableau 10.

Les variations en fonction de la concentration en acide du volume molaire apparent des halogénures à dilution infinie ϕ_s^0 sont représentées par les Figs. 1-3.

Pour chaque sel, ϕ_*^0 augmente quand la concentration en acide halogéné augmente. La variation de ce volume est plus rapide aux fortes concentrations pour les chlorures. Pour les bromures on observe le même phénomène en ce qui concerne le calcium et le strontium. Par contre, ϕ_*^0 augmente moins vite aux fortes concentrations en acide pour le bromure de baryum et pour les iodures des trois éléments alcalinoterreux. Redlich et Meyer³ ont donné des expressions mathématiques traduisant les variations du volume molaire en fonction de la concentration en sel pour un solvant donné.

Ces expressions sont du type

$$\phi_{c} = \phi_{c}^{0} + k c^{1/2} + h c + l c^{2} + ...$$

où ϕ_v^0 est le volume molaire apparent à dilution infinie, et h, k, l, sont des constantes. Une telle expression permet de traduire les variations de ϕ_v dans l'eau pure et certains milieux acides, mais elle ne peut s'appliquer dans tous les cas. D'autre part, elle ne constitue qu'un ajustement polynomial des courbes obtenues, les coefficients h, k, l n'ayant alors pas de signification physique.

CONCLUSION

Les valeurs des volumes molaires apparents obtenues, pour les sels dissous dans l'eau pure, sont en accord avec celles de la littérature. Ainsi Jones et Talley* ont trouvé

$$\phi_r^0 = 18,25 \text{ cm}^3 \text{ pour CaCl}_2$$
 et

 $\phi_r^0 = 23,6 \text{ cm}^3 \text{ pour BaCl}_2$ et Kruis⁵ a trouvé

 $\phi_r^0 = 17,94 \text{ cm}^3 \text{ pour SrCl}_2$.

Aucune valeur ne figure par contre dans la littérature pour les systèmes en milieu acide. Les variations du volume molaire apparent des halogénures alcalino-terreux sont très importantes en fonction de la concentration en acide halogéné. Parallèlement, les enthalpies de dissolution dans ces milieux varient de façon considérable.

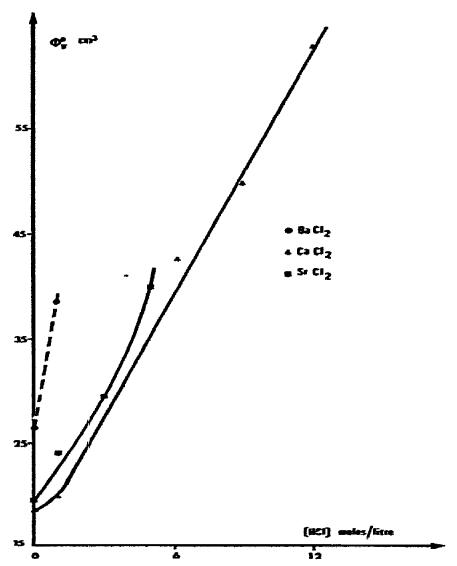


Fig. 1. Variations en fonction de la concentration en acide du volume molaire apparent de MCl2 à dilution infinie.

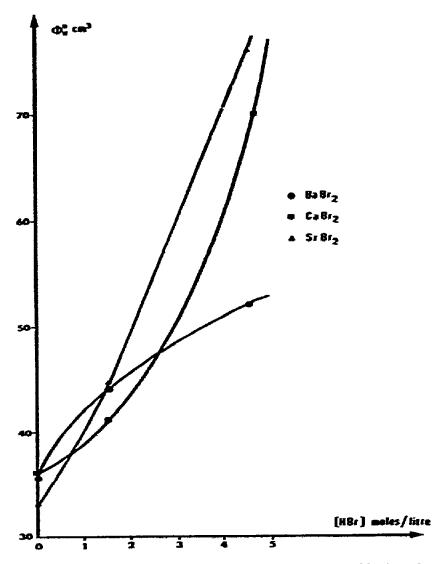


Fig. 2. Variations en fonction de la concentration en acide du volume molaire apparent de MBr_{\pm} à dilution infinie.

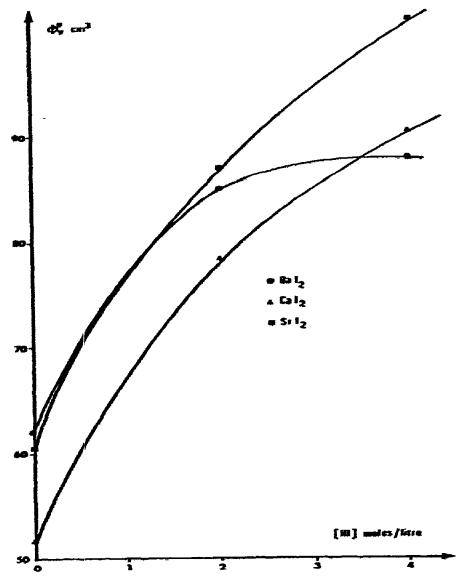


Fig. 3. Variation en fonction de la concentration en acide du volume molaire apparent de Ml_2 à dilution infinie.

BIBLIOGRAPHIE

- 1 H. Stabiner, H. Leopold et O. Krasky, Monatsh. Chem., 98 (1967) 436-438.
- 2 L. Rabardel, M. Pouchard et P. Hagenmuller, Brevet CNR5 No. 72-118 (1966).
- 3 O. Redlich et D. M. Meyer, Chem. Rev., 64 (1964) 221-227.
- 4 G. Jones et S. K. Talley, J. Am. Chem. Soc., 55 (1933) 624.
- 5 A. Kruis, Z. Phys. Chem., Abt. B, 34 (1934) 1.